Abnormal Wave Propagation in Passive Media
نویسندگان
چکیده
Abnormal velocities in passive structures such as one-dimensional (1-D) photonic crystals and a slab having a negative index of refraction are discussed. In the case of 1-D photonic crystal, the frequencyand time-domain experiments for waves tuned to the bandgap of the photonic crystal demonstrate a positive group velocity exceeding the speed of light in vacuum (superluminal). In the case of a medium with negative index of refraction, our theoretical studies show that such a medium can support positive group and negative phase velocities (backward waves), as well as negative group and negative phase velocities. The meaning of superluminal group velocity and negative group velocity, or equally, positive superluminal group delay and negative group delay, are discussed. It is shown that despite their counterintuitive meaning there are no contradictions with the requirements of relativistic causality (Einstein causality). To clearly demonstrate this, the important subject of the “front” is reintroduced.
منابع مشابه
Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملPlane Wave Propagation Through a Planer Slab
An approximation technique is considered for computing transmission and reflection coefficients for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is s...
متن کاملWave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)
A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.
متن کاملWave propagation theory in offshore applications
A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...
متن کاملWave packet propagation by the Faber polynomial approximation in electrodynamics of passive media
Maxwell’s equations for propagation of electromagnetic waves in dispersive and absorptive (passive) media are represented in the form of the Schrödinger equation i∂Ψ/∂t = HΨ, where H is a linear differential operator (Hamiltonian) acting on a multi-dimensional vector Ψ composed of the electromagnetic fields and auxiliary matter fields describing the medium response. In this representation, the ...
متن کامل